New perspective on sampling-based motion planning via random geometric graphs
نویسندگان
چکیده
منابع مشابه
New perspective on sampling-based motion planning via random geometric graphs
Roadmaps constructed by many sampling-based motion planners coincide, in the absence of obstacles, with standard models of random geometric graphs (RGGs). Those models have been studied for several decades and by now a rich body of literature exists analyzing various properties and types of RGGs. In their seminal work on optimal motion planning Karaman and Frazzoli [31] conjectured that a sampl...
متن کاملBIT*: Batch Informed Trees for Optimal Sampling-based Planning via Dynamic Programming on Implicit Random Geometric Graphs
Path planning in continuous spaces has traditionally been divided between discrete and sampling-based techniques. Discrete techniques use the principles of dynamic programming to solve a discretized approximation of the problem, while sampling-based techniques use random samples to perform a stochastic search on the continuous state space. In this paper, we use the fact that stochastic planners...
متن کاملSampling Geometric Inhomogeneous Random Graphs in Linear Time
Real-world networks, like social networks or the internet infrastructure, have structural properties such as large clustering coefficients that can best be described in terms of an underlying geometry. This is why the focus of the literature on theoretical models for real-world networks shifted from classic models without geometry, such as Chung-Lu random graphs, to modern geometry-based models...
متن کاملSampling-based algorithms for optimal motion planning
During the last decade, sampling-based path planning algorithms, such as Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g., as a functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Journal of Robotics Research
سال: 2018
ISSN: 0278-3649,1741-3176
DOI: 10.1177/0278364918802957